29,674 research outputs found

    New results on the genetic cryptanalysis of TEA and reduced-round versions of XTEA

    Get PDF
    Congress on Evolutionary Computation. Portland, USA, 19-23 June 2004Recently, a simple way of creating very efficient distinguishers for cryptographic primitives such as block ciphers or hash functions, was presented by the authors. Here, this cryptanalysis attack is shown to be successful when applied over reduced round versions of the block cipher XTEA. Additionally, a variant of this genetic attack is introduced and its results over TEA shown to be the most powerful published to date

    The role of hyperfine mixing in bcb\to c semileptonic decays of doubly-heavy baryons

    Full text link
    We analyze the effects of hyperfine mixing in bcb \to c semileptonic decays of doubly heavy baryons. We qualitatively confirm the results by W. Roberts and M. Pervin in Int. J. Mod. Phys. A, 2009, {\bf 24}: 2401-2413, finding that mixing has a great impact on those transitions. However, predictions without mixing differ by a factor of 2 and this discrepancy translates to the mixed case where large differences in decay widths are observed between the two calculations.Comment: 3 latex pages. Talk given at The 5-th International Conference on Quarks and Nuclear Physics (QNP09), Beijing, September 200

    Hyperfine mixing in bcb\to c semileptonic decay of doubly heavy baryons

    Get PDF
    We qualitatively corroborate the results of W. Roberts and M. Pervin in Int. J. Mod. Phys. A 24, 2401 (2009) according to which hyperfine mixing greatly affects the decay widths of bcb\to c semileptonic decays involving doubly heavy bcbc baryons. However, our predictions for the decay widths of the unmixed states differ from those reported in the work of Roberts and Pervin by a factor of 2, and this discrepancy translates to the mixed case. We further show that the predictions of heavy quark spin symmetry, might be used in the future to experimentally extract information on the admixtures in the actual physical bcbc baryons, in a model independent manner.Comment: 7 Latex pages, 4 Table

    Finding efficient nonlinear functions by means of genetic programming

    Get PDF
    7th International Conference, KES 2003. Proceedings, Part I. Oxford, UK, September 3-5, 2003The design of highly nonlinear functions is relevant for a number of different applications, ranging from database hashing to message authentication. But, apart from useful, it is quite a challenging task. In this work, we propose the use of genetic programming for finding functions that optimize a particular nonlinear criteria, the avalanche effect, using only very efficient operations, so that the resulting functions are extremely efficient both in hardware and in software.Supported by the Spanish Ministerio de Ciencia y Tecnologia research project TIC2002-04498-C05-4Publicad

    On the design of state-of-the-art pseudorandom number generators by means of genetic programming

    Get PDF
    Congress on Evolutionary Computation. Portland, EEUU, 19-23 June 2004The design of pseudorandom number generators by means of evolutionary computation is a classical problem. Today, it has been mostly and better accomplished by means of cellular automata and not many proposals, inside or outside this paradigm could claim to be both robust (passing all the statistical tests, including the most demanding ones) and fast, as is the case of the proposal we present here. Furthermore, for obtaining these generators, we use a radical approach, where our fitness function is not at all based in any measure of randomness, as is frequently the case in the literature, but of nonlinearity. Efficiency is assured by using only very efficient operators (both in hardware and software) and by limiting the number of terminals in the genetic programming implementation
    corecore